Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification and evaluation of a highly effective fusion inhibitor for human metapneumovirus.

Human metapneumovirus (hMPV) can cause acute upper and lower respiratory tract infections that are particularly severe in young children, elderly subjects, and immunocompromised patients. To date, no treatments or vaccines are available for hMPV infections. Our objective was to assess the inhibitory potential of several peptides derived from the heptad repeat A and B (HRA and HRB) domains of the hMPV fusion protein. Nine candidate peptides were expressed in Escherichia coli or obtained synthetically and tested in vitro and in an animal model. Excellent in vitro inhibition of an hMPV strain of the A1 subgroup was obtained with five peptides, with 50% inhibitory concentrations ranging from 1.4 nM to 3.3 microM. One peptide, HRA2, displayed very potent activity against all four hMPV subgroups. It was also moderately active against human respiratory syncytial virus (strain A2) but displayed no activity against human parainfluenza virus type 3. BALB/c mice that received the HRA2 peptide and a lethal hMPV intranasal challenge simultaneously were completely protected from clinical symptoms and mortality. On day 5 postinfection, HRA2-treated mice had undetectable lung viral loads which were significantly less than those of untreated mice (3 x 10(4) 50% tissue culture infective doses/lung). Pulmonary inflammation, levels of proinflammatory cytokines/chemokines (RANTES, gamma interferon, and monocyte chemoattractant protein 1) and airway obstruction were also significantly decreased in HRA2-treated mice. The results of this study demonstrate that potent antivirals can be derived from the hMPV fusion protein HR domains. Moreover, hMPV, compared to other paramyxoviruses and to the human immunodeficiency virus, seems to be more susceptible to HRA- than HRB-derived peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app