Add like
Add dislike
Add to saved papers

Agenesis of the corpus callosum and cerebral anomalies in inborn errors of metabolism.

Congenital Anomalies 2007 December
Dysgenesis of the corpus callosum has been recognized as a marker for aberrant development of the central nervous system. It has been suggested that developmental defects of the corpus callosum may be more frequently encountered in patients with inborn errors of metabolism. The objectives of the present study were to determine the prevalence of developmental defects of the corpus callosum in patients attending a genetics-metabolic disorders clinic, to describe the spectrum of abnormalities in brain development in patients with confirmed inborn errors of metabolism and abnormalities of the corpus callosum as ascertained by neuroimaging and/or postmortem studies. Nineteen patients (10 males, 9 females) with confirmed metabolic diagnoses were identified by systematic search of the genetics clinic database. All 19 (100%) expressed variable degrees of hypoplasia, complete or partial agenesis (ACC). Abnormalities of head size were noted in 17/19 (89.5%). The majority 12/17 (70.5%) were associated with microcephaly, while macrocrania was noted in 5/17 (29.5%). Associated central nervous system (CNS) anomalies included abnormalities in ventricular morphology in 18/19 (94.7%), ventriculomegaly in 11/19 (63.1%), increased extraxial cerebrospinal fluid space in 11/19 (57.9%), changes in the gray matter (neuronal migration defects, porencephaly) in 9/19 (47.3%), white matter changes in 12/19 (63.1%) and abnormalities of the posterior fossa and hindbrain in 12/19 (63.1%). In patients with inborn errors of metabolism, dysgenesis of the corpus callosum serves as a marker for other developmental defects within the nervous system. We discuss here potential mechanisms by which metabolic defects affect diverse biochemical pathways, altering key neurobiological processes (e.g. defective cell membrane formation, cellular bioenergetics and cell-to-cell signaling), that eventually lead to structural abnormalities in the developing nervous system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app