Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Air travel hypoxemia vs. the hypoxia inhalation test in passengers with COPD.

Chest 2008 April
BACKGROUND: Limited data are available comparing air travel with the hypoxia inhalation test (HIT) in passengers with COPD. The aim of this study was to assess the predictive capability of the HIT to in-flight hypoxemia in passengers with COPD.

METHODS: Thirteen passengers (seven female passengers) with COPD (mean [+/- SD], FEV(1)/FVC ratio, 44 +/- 17%) volunteered for this study. Respiratory function tests were performed preflight. Pulse oximetry, cabin pressure, and dyspnea were recorded in flight. The HIT and a 6-min walk test were performed postflight. The in-flight oxygenation response was compared to the HIT results and respiratory function parameters.

RESULTS: All subjects flew without the use of oxygen, and no adverse events were recorded in-flight (mean cabin altitude, 2,165 m; altitude range, 1,892 to 2,365 m). Air travel caused significant desaturation (mean preflight oxygen saturation, 95 +/- 1%; mean in-flight oxygen saturation, 86 +/- 4%), which was worsened by activity (nadir pulse oximetric saturation [Spo(2)], 78 +/- 6%). The HIT caused mean desaturation that was comparable to that of air travel (84 +/- 4%). The mean in-flight partial pressure of inspired oxygen (Pio(2)) was higher than the HIT Pio(2) (113 +/- 3 mm Hg vs 107 +/- 1 mm Hg, respectively; p < 0.001). The HIT Spo(2) showed the strongest correlation with in-flight Spo(2) (r = 0.84; p < 0.001).

CONCLUSION: Significant in-flight desaturation can be expected in passengers with COPD. The HIT results compared favorably with the air travel data, with differences explainable by Pio(2) and physical activity. The HIT is the best widely available laboratory test to predict in-flight hypoxemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app