Journal Article
Review
Add like
Add dislike
Add to saved papers

Regulatory T cells in primary immunodeficiency diseases.

PURPOSE OF REVIEW: Several primary immune deficiency disorders are associated with autoimmunity and malignancy, suggesting a state of immune dysregulation. Here, we review the role of regulatory T-cell deficits in mediating the immune dysregulation associated with certain primary immune deficiency disorder syndromes.

RECENT FINDINGS: Systematic studies in primary immune deficiency disorders and their associated animal models have led to an increased understanding of both central and peripheral tolerance mechanisms, and in particular have yielded new insights into regulatory T-cell function, development and maintenance.

SUMMARY: Single-gene defects identified in patients with multiple autoimmune phenomena have defined new primary immune deficiency disorder syndromes in which the primary deficit is in the establishment or maintenance of immune tolerance. The disorder that has been most informative with regard to understanding the function and development of regulatory T cells is forkhead box P3 deficiency, known as immune dysregulation, polyendocrinopathy, enteropathy and X-linked syndrome in humans and Scurfy in the mouse. Recent studies in patients with other primary immune deficiency disorders, including autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy syndrome, CD25 deficiency, STAT5b deficiency, and Wiskott-Aldrich syndrome, have added to our understanding of regulatory T-cell biology. The study of patients with rare primary immune deficiency disorder syndromes provides an unparalleled opportunity to understand mechanisms of autoimmunity and immune tolerance in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app