Add like
Add dislike
Add to saved papers

Sensory and electromyographic mapping during delayed-onset muscle soreness.

PURPOSE: The aim of this human study was to apply novel topographical mapping techniques to investigate sensory and EMG manifestations of delayed-onset muscle soreness (DOMS) in multiple locations of the quadriceps.

METHODS: Bipolar surface EMG signals were recorded from 11 healthy men with 15 pairs of electrodes located at 10, 20, 30, 40, and 50% of the distance from the medial, superior, and lateral border of the patella to the anterior superior iliac spine. Subjects performed sustained isometric knee extensions at 40% of the maximal force (MVC) until task failure before, 24 h, and 48 h after eccentric exercise. Pressure-pain thresholds (PPT) were assessed at the 15 locations where the EMG was recorded.

RESULTS: Time to task failure was reduced after the eccentric exercise (mean +/- SD, 56.6 +/- 23 s before the eccentric exercise; 34.3 +/- 18.9 s at 24 h after exercise; and 34.3 +/- 14.4 s at 48 h after exercise). During the postexercise sustained contractions, EMG average rectified value (ARV) significantly decreased over time (P < 0.001), but it did not change over time before the eccentric exercise. Moreover, the decrease in ARV over time during postexercise contractions was greatest in the distal region of the quadriceps, where the PPT were most reduced (P < 0.05).

CONCLUSION: Novel topographical mapping of both surface EMG and PPT of the quadriceps showed site-dependent effects of eccentric exercise, probably attributable to variations in the morphological and architectural characteristics of the muscle fibers. Greater manifestations of DOMS in the distal region of the quadriceps may indicate a greater susceptibility of this region to further injury after eccentric exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app