JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease.

Red blood cells with abnormal hemoglobins (Hb) are frequently associated with increased hemoglobin autoxidation, accumulation of iron in membranes, increased membrane damage and a shorter red cell life span. The mechanisms for many of these changes have not been elucidated. We have shown in our previous studies that hydrogen peroxide formed in association with hemoglobin autoxidation reacts with hemoglobin and initiates a cascade of reactions that results in heme degradation with the formation of two fluorescent emission bands and the release of iron. Heme degradation was assessed by measuring the fluorescent band at ex 321 nm. A 5.6 fold increase in fluorescence was found in red cells from sickle transgenic mice that expressed exclusively human globins when compared to red cells from control mice. When sickle transgenic mice co-express the gamma M transgene, that expresses HbF and inhibits polymerization, heme degradation is decreased. Mice expressing exclusively hemoglobin C had a 6.9 fold increase in fluorescence compared to control. Heme degradation was also increased 3.5 fold in beta-thalassemic mice generated by deletion of murine beta(major). Membrane bound IgG and red cell metHb were highly correlated with the intensity of the fluorescent heme degradation band. These results suggest that degradation of the heme moiety in intact hemoglobin and/or degradation of free heme by peroxides are higher in pathological RBCs. Concomitant release of iron appears to be responsible for the membrane damage that leads to IgG binding and the removal of red cells from circulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app