JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Toll-like receptor signaling is impaired in dendritic cells from patients with X-linked agammaglobulinemia.

Bruton's tyrosine kinase (BTK), which is defective in patients with X-linked agammaglobulinemia (XLA), is expressed not only in B cells but also in monocytes and dendritic cells (DCs). DCs play a crucial role in the innate immune response against infections by sensing pathogens through Toll-like receptors (TLRs). However, it is not known whether BTK deficiency in XLA might impair TLR-mediated signaling in DCs, which are susceptible to various infections. The phenotypic maturation and cytokine production mediated by TLRs were examined in monocyte-derived DC from XLA patients and normal controls. The TLR expression in DCs was analyzed by flow cytometry. TLR-mediated signaling in DCs was evaluated for the phenotypic maturation based on CD83 expression and production of cytokines, such as TNF-alpha, IL-6 and IL-12p70. TLR levels in DCs were similar between XLA and controls. TLR2, TLR4 and TLR7/8 ligands elicited less phenotypic maturation of DCs from XLA patients than normal controls based on CD83 expression. Stimulation with TLR2, TLR4 and TLR7/8 ligands, as well as TLR3 ligand, resulted in significantly lower production of TNF-alpha, but neither IL-6 nor IL-12p70, by DCs from XLA patients in comparison to normal controls. These findings suggest that BTK may thus be required for TLR signaling in DCs. The impaired TLR signaling in DCs may therefore be partly responsible for the occurrence of severe infections with bacteria and some viruses in XLA patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app