Add like
Add dislike
Add to saved papers

Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT.

OBJECTIVE: The purpose of our study was to determine the attenuation threshold value for the detection and quantification of air trapping using paired inspiratory and expiratory volumetric MDCT scans and to assess whether the densitometric parameter can be used for the quantification of airway dysfunction in chronic obstructive pulmonary disease (COPD) regardless of the degree of emphysema.

MATERIALS AND METHODS: This study included 36 patients with COPD who underwent 64-MDCT. The entire lung volume with attenuation between -500 and -1,024 H was segmented as whole lung. The lung volume with attenuation between -500 and -950 H was segmented as limited lung, while the lung volume of less than -950 H was segmented as emphysema and eliminated. The relative volumes for limited lung (relative volume(n-950)) with attenuation values below thresholds (n) ranging from -850 to -950 H, and relative volume for whole lung (relative volume(
RESULTS: The highest correlation with PFTs was observed at the upper threshold of -860 H. In the moderate to severe emphysema group (relative volume(<-950) > 15%), relative volume change(860-950) significantly correlated with the results of PFTs, whereas no significant correlations were seen between relative volume change(<-860) and PFTs. In the minimal or mild emphysema group (inspiratory relative volume(<-950) < 15%), all densitometric parameters correlated with PFTs.

CONCLUSION: The densitometric parameter of relative volume change calculated on paired inspiratory and expiratory MDCT using the threshold of -860 H in limited lung correlated closely with airway dysfunction in COPD regardless of the degree of emphysema.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app