JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Bortezomib-mediated proteasome inhibition as a potential strategy for the treatment of rhabdomyosarcoma.

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood, divided into two major histological subtypes, embryonal (ERMS) and alveolar (ARMS). To explore the possibility that the proteasome could be a target of therapeutic value in rhabdomyosarcoma, we treated several RMS cell lines with the proteasome inhibitor bortezomib (Velcade or PS-341) at a concentration of 13-26 nM. RMS cells showed high sensitivity to the drug, whereas no toxic effect was observed in primary human myoblasts. In both ERMS and ARMS cells bortezomib promoted apoptosis, activation of caspase 3 and 7 and induced a dose-dependent reduction of anchorage-independent growth. Furthermore, bortezomib induced activation of the stress response, cell cycle arrest and the reduction of NF-kappaB transcriptional activity. Finally, bortezomib decreased tumour growth and impaired cells viability, proliferation and angiogenesis in a xenograft model of RMS. In conclusion, our data indicate that bortezomib could represent a novel drug against RMS tumours.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app