Journal Article
Review
Add like
Add dislike
Add to saved papers

Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation.

Phosphorous is essential for multiple cellular functions and constitutes an important mineral in bone. Hypophosphatemia in children leads to rickets resulting in abnormal growth and often skeletal deformities. Among various causes of low serum phosphorous are inherited disorders associated with increased urinary excretion of phosphate, including autosomal dominant hypophosphatemic rickets (ADHR), X-linked hypophosphatemia (XLH), autosomal recessive hypophosphatemia (ARHP), and hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Recent genetic analyses and subsequent biochemical and animal studies have revealed several novel molecules that appear to play key roles in the regulation of renal phosphate handling. These include a protein with abundant expression in bone, fibroblast growth factor 23 (FGF23), which has proven to be a circulating hormone that inhibits tubular reabsorption of phosphate in the kidney. Two other bone-specific proteins, PHEX and dentin matrix protein 1 (DMP1), appear to be necessary for limiting the expression of fibroblast growth factor 23, thereby allowing sufficient renal conservation of phosphate. This review focuses on the clinical, biochemical, and genetic features of inherited hypophosphatemic disorders, and presents the current understanding of hormonal and molecular mechanisms that govern phosphorous homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app