JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Improvement of migratory defects in a murine model of Wiskott-Aldrich syndrome gene therapy.

Wiskott-Aldrich syndrome (WAS) is an X-linked hematological disease characterized by immunodeficiency, eczema, and thrombocytopaenia, and shows promise for treatment with hematopoietic stem cell gene therapy. The immunopathology of WAS is attributable at least in part to defects of cell migration and localization as a result of chemotactic, adhesive, and chemokinetic defects. Whereas previous studies using either gammaretroviral or lentiviral vectors have demonstrated variable correction of T-cell proliferation and dendritic cell (DC) cytoarchitecture, we have used a lentiviral vector expressing an eGFP-WASp fusion protein to test the potential for restoration of cell migratory defects. Multilineage expression of the fusion transgene was present for up to 10 months after primary engraftment, and also in secondary recipients analyzed after a further 9 months. Transduced bone marrow-derived dendritic cells (BMDCs) demonstrated recovery of podosome numbers and turnover, while B cells, BMDCs, and Langerhans cells (LCs) exhibited enhanced chemotactic responses to specific stimuli. As an indication of functionality in vivo, splenic marginal zone B cells and a cutaneous contact hypersensitivity (CHS) response to dinitrofluorobenzene (DNFB) were both partially restored. These proof of principle experiments demonstrate that WAS protein (WASp) transgene expression can be successfully maintained long term in primary and secondary recipients, and that it is associated with a significant repair of migratory defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app