Add like
Add dislike
Add to saved papers

Functional analysis of single amino-acid mutations in the thrombopoietin-receptor Mpl underlying congenital amegakaryocytic thrombocytopenia.

Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare disorder that presents with severe thrombocytopenia and absence of megakaryocytes in the bone marrow. The disease may develop into bone marrow aplasia. Genetic defects in the gene encoding the thrombopoietin (Tpo) receptor, MPL, are the cause of this disease. In a previous study, we identified four missense mutations in CAMT patients, predicting Arg102Pro, Pro136His, Arg257Cys and Pro635Leu. To investigate whether these mutations result in defective Tpo-binding and/or signalling, full-length wildtype and mutant MPL were transduced into K562 cells. Expression levels and the ability to activate the mitogen-activated protein kinase, Janus kinase-signal transducer and activator of transcription and phosphoinositide-3 kinase pathways upon Tpo-binding were studied. The results predicted that MPL carrying the P136H or P635L mutation was not properly expressed, whereas the R102P and R257C mutations resulted in impaired signal transduction. Our results indicate that a severe clinical course may be expected when these mutations lead to absent Mpl expression or signalling in CAMT patients with missense mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app