JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

The mTOR pathway and its role in human genetic diseases.

The signalling components upstream and downstream of the protein kinase mammalian target of rapamycin (mTOR) are frequently altered in a wide variety of human diseases. Upstream of mTOR key signalling molecules are the small GTPase Ras, the lipid kinase PI3K, the Akt kinase, and the GTPase Rheb, which are known to be deregulated in many human cancers. Mutations in the mTOR pathway component genes TSC1, TSC2, LKB1, PTEN, VHL, NF1 and PKD1 trigger the development of the syndromes tuberous sclerosis, Peutz-Jeghers syndrome, Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Lhermitte-Duclos disease, Proteus syndrome, von Hippel-Lindau disease, Neurofibromatosis type 1, and Polycystic kidney disease, respectively. In addition, the tuberous sclerosis proteins have been implicated in the development of several sporadic tumors and in the control of the cyclin-dependent kinase inhibitor p27, known to be of relevance for several cancers. Recently, it has been recognized that mTOR is regulated by TNF-alpha and Wnt, both of which have been shown to play critical roles in the development of many human neoplasias. In addition to all these human diseases, the role of mTOR in Alzheimer's disease, cardiac hypertrophy, obesity and type 2 diabetes is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app