In Vitro
Journal Article
Add like
Add dislike
Add to saved papers

The effect of local anesthetics administered via pain pump on chondrocyte viability.

BACKGROUND: Chondrolysis initiated by postoperative, intra-articular pain pumps has recently been described by multiple institutions.

PURPOSE: To evaluate the in vitro chondrotoxicity of anesthetic formulations commonly used in pain pumps.

STUDY DESIGN: Controlled laboratory study.

METHODS: Freshly isolated human articular chondrocytes were cultured for 24-, 48-, and 72-hour trials in a custom bioreactor that mimics the metabolism of synovial fluid. Chondrocytes were perfused in Dulbecco's Modified Eagle's Medium 10% fetal bovine serum and one of the following medications: 1% lidocaine, 1% lidocaine with epinephrine, 0.25% bupivacaine, 0.25% bupivacaine with epinephrine, 0.5% bupivacaine, or 0.5% bupivacaine with epinephrine. Static and perfusion cultures with growth media were used as controls. All experiments were run in duplicate. Live/dead staining was performed, and the ratio of dead:live cells was assessed by fluorescent microscopy and histomorphometry.

RESULTS: Significantly more chondrocyte necrosis was found in all cultures with medications containing epinephrine (P < .05) at all time points. Similar necrosis rates were exhibited in 0.25% and 0.5% bupivacaine compared with controls at 24 and 48 hours. However, 0.5% bupivacaine produced significantly more cell death at 72 hours. Similar necrosis rates were exhibited with 1% lidocaine compared to controls at 24 hours.

CONCLUSION: In this in vitro model, 0.25% and 0.5% bupivacaine caused minimal chondrocyte necrosis when used in pain pumps for a maximum of 48 hours. All anesthetics containing epinephrine (pH
CLINICAL RELEVANCE: The results of this study may help improve the safety of intra-articular pain pump use by examining the effects of local anesthetics on chondrocyte viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app