COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Array-based comparative genomic hybridization in early-stage mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A, SMAC/DIABLO, and RHOF.

The etiology of mycosis fungoides (MF), the most frequent form of cutaneous T cell lymphoma (CTCL), is poorly understood. No specific genetic aberration has been detected, especially in early-stage disease, possibly due to the clinical and histological heterogeneity of patient series and to the different sources of malignant cells (skin, blood, or lymph node) included in most studies. Frozen skin biopsies from 16 patients with early-stage MF were studied using array-based comparative genomic hybridization. A DNA pool from healthy donors was used as the reference. Results demonstrated recurrent loss of 19, 7p22.1-p22.3, 7q11.1-q11.23, 9q34.12, 12q24.31, and 16q22.3-q23.1, and gain of 8q22.3-q23.1 and 21q22.12. The 12q24.31 region was recurrently deleted in 7/16 patients. Real-time PCR investigation for deletion of genes BCL7A, SMAC/DIABLO, and RHOF-three tumor suppressor genes with a putative role in hematological malignancies-demonstrated that they were deleted in 9, 10, and 13 cases, respectively. The identified genomic alterations and individual genes could yield important insights into the early steps of MF pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app