Comparative Study
Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT.

European Radiology 2009 January
The aim of this study was to test a large sample of the latest coronary artery stents using four image reconstruction approaches with respect to lumen visualization, lumen attenuation, and image noise in dual-source multidetector row CT (DSCT) in vitro and to provide a CT catalogue of currently used coronary artery stents. Twenty-nine different coronary artery stents (19 steel, 6 cobalt-chromium, 2 tantalum, 1 iron, 1 magnesium) were examined in a coronary artery phantom (vessel diameter 3 mm, intravascular attenuation 250 HU, extravascular density -70 HU). Stents were imaged in axial orientation with standard parameters: 32 x 0.6 collimation, pitch 0.24, 400 mAs, 120 kV, rotation time 0.33 s. Image reconstructions were obtained with four different convolution kernels (soft, medium-soft, standard high-resolution, stent-dedicated). To evaluate visualization characteristics of the stent, the lumen diameter, intraluminal density, and noise were measured. The stent-dedicated kernel offered best average lumen visualization (54 +/- 8.3%) and most realistic lumen attenuation (222 +/- 44 HU) at the expense of increased noise (23.9 +/- 1.9 HU) compared with standard CTA protocols (p < 0.001 for all). The magnesium stent showed the least artifacts with a lumen visibility of 90%. The majority of stents (79%) exhibited a lumen visibility of 50-59%. Less than half of the stent lumen was visible in only six stents. Stent lumen visibility largely varies depending on the stent type. Magnesium is by far more favorable a stent material with regard to CT imaging when compared with the more common materials steel, cobalt-chromium, or tantalum. The magnesium stent exhibits a lumen visibility of 90%, whereas the majority of the other stents exhibit a lumen visibility of 50-59%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app