JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Keeping checkpoint kinases in line: new selective inhibitors in clinical trials.

BACKGROUND: Checkpoint kinase 1 (Chk1), a serine/threonine kinase, functions as a regulatory kinase in cell cycle progression and is a critical effector of the DNA-damage response. Inhibitors of Chk1 are known to sensitise tumours to a variety of DNA-damaging agents and increase efficacy in preclinical models.

OBJECTIVE: The most advanced agents are now in Phase I clinical trials; the preclinical profiles of these drugs are compared and contrasted, together with a discussion of some of the opportunities and challenges facing this potentially revolutionary approach to cancer therapy.

METHODS: A review of the publications and presentations on XL-844, AZD7762 and PF-477736.

RESULTS/CONCLUSIONS: Chk kinases are part of the DNA damage recognition and response pathways and as such represent attractive targets. Agents that target checkpoint kinases have demonstrated impressive evidence preclinically that this approach will provide tumour-specific potentiating agents and may have broad therapeutic utility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app