Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Treatment of neuroinflammation by soluble tumor necrosis factor receptor Type II fused to a thermally responsive carrier.

OBJECT: Biochemical irritation of the dorsal root ganglion (DRG) after intervertebral disc herniation contributes to radiculopathy through tumor necrosis factor-alpha (TNFalpha)-mediated inflammation. Soluble TNF receptor Type II (sTNFRII) sequesters this cytokine, providing clinical benefit. Previous work involving conjugation of sTNFRII with thermally responsive elastin-like polypeptide (ELP) yielded a chimeric protein (ELP-sTNFRII) with in vitro anti-TNFalpha bioactivity. Furthermore, temperature-triggered ELP aggregation into a "depot" prolongs protein residence time following perineural injection. In this study the authors evaluated the inflammatory phenotype of DRG explants after TNFalpha stimulation, and assessed the abilities of sTNFRII or ELP-sTNFRII to attenuate these neuro-inflammatory changes.

METHODS: Rat lumbar DRGs (35 animals) were treated in 6 groups, as follows: control; TNFalpha (25 ng/ml); TNFalpha with low-(0.2 microg/ml) or high-dose (1 microg/ml) sTNFRII; and TNFalpha with low-(52.5 microg/ml) or high-dose (262.5 microg/ml) ELP-sTNFRII. After 24 hours, supernatant was evaluated for inflammatory cytokines (interleukin [IL]-1, IL-6, and IL-10); prostaglandin E2; and metabolites (glutamate, lactate, and pyruvate). Single-factor analysis of variance with post hoc Dunn analysis (alpha = 0.05) was used to assess treatment differences.

RESULTS: Incubation of explants with TNFalpha caused metabolic stress reflected by an increased lactate/pyruvate ratio (1.8 +/- 0.5-fold) and extracellular glutamate (79 +/- 8% increase). Inflammatory activation was observed with heightened IL-6 release (5.2 +/- 1.4-fold) and prostaglandin E2 production (14 +/- 3-fold). An autoregulatory response occurred with an 11.8 +/- 0.6-fold increase in sTNFRI shedding. Treatment with high doses of sTNFRII or ELP-sTNFRII reversed all changes. Values are expressed as the mean +/- standard deviation.

CONCLUSIONS: These results demonstrate that TNFalpha stimulation of DRG explants yields a phenotype of neurotoxic metabolite release and inflammatory mediator expression. Coincubation with either sTNFRII or ELP-sTNFRII antagonizes TNFalpha activity to abrogate these changes, suggesting potential for therapeutic intervention to treat peripheral nerve inflammatory disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app