JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Agenesis and dysgenesis of the corpus callosum: clinical, genetic and neuroimaging findings in a series of 41 patients.

Agenesis of the corpus callosum (ACC) is among the most frequent human brain malformations with an incidence of 0.5-70 in 10,000. It is a heterogeneous condition, for which several different genetic causes are known, for example, ACC as part of monogenic syndromes or complex chromosomal rearrangements. We systematically evaluated the data of 172 patients with documented corpus callosum abnormalities in the records, and 23 patients with chromosomal rearrangements known to be associated with corpus callosum changes. All available neuroimaging data, including CT and MRI, were re-evaluated following a standardized protocol. Whenever feasible chromosome and subtelomere analyses as well as molecular genetic testing were performed in patients with disorders of the corpus callosum in order to identify a genetic diagnosis. Our results showed that 41 patients with complete absence (agenesis of the corpus callosum-ACC) or partial absence (dysgenesis of the corpus callosum-DCC) were identified. Out of these 28 had ACC, 13 had DCC. In 11 of the 28 patients with ACC, the following diagnoses could be established: Mowat-Wilson syndrome (n = 2), Walker-Warburg syndrome (n = 1), oro-facial-digital syndrome type 1 (n = 1), and chromosomal rearrangements (n = 7), including a patient with an apparently balanced reciprocal translocation, which led to the disruption and a predicted loss of function in the FOXG1B gene. The cause of the ACC in 17 patients remained unclear. In 2 of the 13 patients with DCC, unbalanced chromosomal rearrangements could be detected (n = 2), while the cause of DCC in 11 patients remained unclear. In our series of cases a variety of genetic causes of disorders of the corpus callosum were identified with cytogenetic anomalies representing the most common underlying etiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app