JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanical loading effects on isthmic spondylolytic lumbar segment: finite element modelling using a personalised geometry.

Biomechanics of the isthmic spondylolysis was investigated by using a nonlinear 3D-finite element model (FEM). A personalised in vivo pediatric geometry of L5-S1 low-grade spondylolisthesis patient was used to develop a L5-pelvis motion segment model that took into consideration vertebrae, disc and ligaments. The stress distribution in the affected motion segment under axial force only, and for a combination of flexion and extension was evaluated. Predicted results showed that, under all loading conditions, stresses were much higher on the pedicle and in the dorsal wall of the pars interarticularis due to the abnormal geometry which is consistent with clinical observations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app