Case Reports
Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rapid allelic discrimination by TaqMan PCR for the detection of the Gilbert's syndrome marker UGT1A1*28.

Gilbert's syndrome causes mild, unconjugated hyperbilirubinemia and is present in approximately 10% of the Caucasian population. The basis of the disorder is a 70% reduction in bilirubin glucuronidation catalyzed by the UDP-glucuronosyltransferase 1A1 (UGT1A1), which, in Caucasians, is the result of a homozygous TA insertion into the promoter region of the UGT1A1 gene (UGT1A1*28). Homozygous carriers of UGT1A1*28 as well as those with additional UGT1A variants can suffer from severe irinotecan toxicity or jaundice during treatment with the protease inhibitor atazanavir. UGT1A1*28 genotyping identifies patients at risk for drug toxicity and can increase drug safety by dose individualization. Rapid and facile UGT1A1*28 genotyping is therefore of great clinical importance. Two hundred ninety-one patients with suspected Gilbert's syndrome were genotyped using the TaqMan 5'nuclease assay with minor groove binder-non fluorescent quench probes; results were confirmed by direct sequencing. Ninety-six patients (33%) were homozygous for UGT1A1*28, which was verified by direct sequencing of a different PCR product showing 100% concordance with the TaqMan PCR results. We describe a novel UGT1A1*28 genotyping method that employs allelic discrimination by TaqMan PCR. This assay provides a rapid, high-throughput, and cost-effective method for Gilbert's syndrome genotyping, which is of value for pretreatment screening of potential irinotecan toxicity. The method utilizes a technological platform that is widely used in clinical practice and could therefore be easily adapted for routine clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app