JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impaired biotinidase activity disrupts holocarboxylase synthetase expression in late onset multiple carboxylase deficiency.

Biotinidase catalyzes the hydrolysis of the vitamin biotin from proteolytically degraded biotin-dependent carboxylases. This key reaction makes the biotin available for reutilization in the biotinylation of newly synthesized apocarboxylases. This latter reaction is catalyzed by holocarboxylase synthetase (HCS) via synthesis of 5'-biotinyl-AMP (B-AMP) from biotin and ATP, followed by transfer of the biotin to a specific lysine residue of the apocarboxylase substrate. In addition to carboxylase activation, B-AMP is also a key regulatory molecule in the transcription of genes encoding apocarboxylases and HCS itself. In humans, genetic deficiency of HCS or biotinidase results in the life-threatening disorder biotin-responsive multiple carboxylase deficiency, characterized by a reduction in the activities of all biotin-dependent carboxylases. Although the clinical manifestations of both disorders are similar, they differ in some unique neurological characteristics whose origin is not fully understood. In this study, we show that biotinidase deficiency not only reduces net carboxylase biotinylation, but it also impairs the expression of carboxylases and HCS by interfering with the B-AMP-dependent mechanism of transcription control. We propose that biotinidase-deficient patients may develop a secondary HCS deficiency disrupting the altruistic tissue-specific biotin allocation mechanism that protects brain metabolism during biotin starvation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app