Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Regulation of magnesium reabsorption in DCT.

The distal convoluted tubule (DCT) is the shortest segment of the nephron and consists of an early (DCT1) and late part (DCT2). Here, several transport proteins, like the thiazide-sensitive NaCl cotransporter (NCC) and the epithelial magnesium (Mg(2+)) channel (TRPM6), are exclusively expressed. This makes the DCT the major site of active transcellular Mg(2+) reabsorption determining the final excretion in the urine. Following the Mg(2+) influx via the apically localized TRPM6, intracellular Mg(2+) diffuses to the basolateral membrane where it is extruded to the blood compartment via still-unidentified Mg(2+) transporters. Recent years have witnessed multiple breakthroughs in the field of transcellular Mg(2+) reabsorption. Epidermal growth factor and estrogen were identified as magnesiotropic hormones by their effect on TRPM6 activity. Intracellularly, receptor of activated protein kinase C 1 and adenosine triphosphate were shown to inhibit TRPM6 activity through its alpha-kinase domain. Furthermore, dysregulation or malfunction of transcellular Mg(2+) reabsorption in DCT has been associated with renal Mg(2+) wasting. Mutations in TRPM6 are responsible for hypomagnesemia with secondary hypocalcemia. A defect in the gamma-subunit of the Na(+)/K(+)-adenosine triphosphatase causes isolated dominant hypomagnesemia resulting from renal Mg(2+) wasting. Moreover, in Gitelman's syndrome, mutations in NCC also result in impaired transcellular Mg(2+) reabsorption in DCT. This review highlights our recently obtained knowledge concerning the molecular regulation of transcellular Mg(2+) reabsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app