Add like
Add dislike
Add to saved papers

Analysis of interfraction prostate motion using megavoltage cone beam computed tomography.

PURPOSE: Determine the degree of interfraction prostate motion and its components measured by using daily megavoltage (MV) cone beam computed tomography (CBCT) imaging.

METHODS AND MATERIALS: A total of 984 daily MV CBCT images from 24 patients undergoing definitive intensity-modulated radiotherapy for localized prostate cancer were analyzed retrospectively. Pretreatment couch shifts, based on physician registration of MV CBCT to planning CT data sets, were used as a measure of daily interfraction motion. Off-line bony registration was performed to separate bony misalignment from internal organ motion. Interobserver and intraobserver variation studies were performed on 20 MV CBCT images.

RESULTS: Mean interfraction prostate motion was 6.7 mm, with the greatest single-axis deviation in the anterior-posterior (AP) direction. The largest positional inaccuracy was accounted for by systematic deviations in bony misalignment, whereas random deviations occurred from bony misalignment and internal prostate motion. In the aggregate, AP motion did not correlate with days elapsed since beginning therapy or on average with rectal size at treatment planning. Interobserver variation was greatest in the AP direction, decreased in experienced observers, and further decreased in intraobserver studies. Mean interfraction motion during the first 6 days of therapy, when used as a subsequent offset, reduced acceptable AP planning target volume margins by 50%.

CONCLUSION: The MV CBCT is a practical direct method of daily localization that shows significant interfraction motion with respect to conventional three-dimensional conformal and intensity-modulated radiotherapy margins, similar to that measured in other modalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app