JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Accelerated development of collapsing glomerulopathy in mice congenic for the HIVAN1 locus.

Kidney International 2009 Februrary
HIV-1 transgenic mice on the FVB/NJ background (TgFVB) are a well validated model of HIV-associated nephropathy (HIVAN). A mapping study between TgFVB and CAST/EiJ (CAST) strains showed this trait to be influenced by a major susceptibility locus on chromosome 3A1-A3 (HIVAN1), with CAST alleles associated with increased risk of disease. We introgressed a 50 Mb interval, encompassing this HIVAN1 locus, from CAST into the TgFVB genome (TgFVB-HIVAN1(CAST) congenic mice). Compared to the TgFVB strain, these congenic mice developed an earlier onset of proteinuria, a rapid progression to kidney failure, and increased mortality. A prospective study of these congenic mice also showed that they had a significantly greater histologic and biochemical evidence of glomerulopathy with one-third of mice developing global glomerulosclerosis by 6 weeks of age. An F2 cross between TgFVB and the congenic mice identified a significant linkage (LOD=3.7) to a 10 cM interval within the HIVAN1 region between D3Mit167 and D3Mit67 resulting in a 60% reduction of the original interval. These data independently confirm that a gene on chromosome 3A1-A3 increases susceptibility to HIVAN, resulting in early onset and rapid progression of kidney disease. These mice represent a new model to study the development and progression of collapsing glomerulopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app