Journal Article
Review
Add like
Add dislike
Add to saved papers

RNA oxidation and zinc in hepatic encephalopathy and hyperammonemia.

Hepatic encephalopathy is a neuropsychiatric manifestation of acute and chronic liver failure. Ammonia plays a key role in the pathogenesis of hepatic encephalopathy by inducing astrocyte swelling and/or sensitizing astrocytes to swelling by a heterogeneous panel of precipitating factors and conditions. Whereas astrocyte swelling in acute liver failure contributes to a clinically overt brain edema, a low grade glial edema without clinically overt brain edema is observed in hepatic encephalopathy in liver cirrhosis. Astrocyte swelling produces reactive oxygen and nitrogen oxide species (ROS/RNOS), which again increase astrocyte swelling, thereby creating a self-amplifying signaling loop. Astroglial swelling and ROS/RNOS increase protein tyrosine nitration and may account for neurotoxic effects of ammonia and other precipitants of hepatic encephalopathy. Recently, RNA oxidation and an increase of free intracellular zinc ([Zn(2+)](i)) were identified as further consequences of astrocyte swelling and ROS/RNOS production. An elevation of [Zn(2+)](i) mediates mRNA expression of metallothionein and the peripheral benzodiazepine receptor (PBR) induced by hypoosmotic astrocyte swelling. Further, Zn(2+) mediates RNA oxidation in ammonia-treated astrocytes. In the brain of hyperammonemic rats oxidized RNA localizes in part to perivascular astrocyte processes and to postsynaptic dendritic spines. RNA oxidation may impair postsynaptic protein synthesis, which is critically involved in learning and memory consolidation. RNA oxidation offers a novel explanation for multiple disturbances of neurotransmitter systems and gene expression and the cognitive deficits observed in hepatic encephalopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app