CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prevention of high-altitude pulmonary edema by nifedipine.

BACKGROUND: Exaggerated pulmonary-artery pressure due to hypoxic vasoconstriction is considered an important pathogenetic factor in high-altitude pulmonary edema. We previously found that nifedipine lowered pulmonary-artery pressure and improved exercise performance, gas exchange, and the radiographic manifestations of disease in patients with high-altitude pulmonary edema. We therefore hypothesized that the prophylactic administration of nifedipine would prevent its recurrence.

METHODS: Twenty-one mountaineers (1 woman and 20 men) with a history of radiographically documented high-altitude pulmonary edema were randomly assigned to receive either 20 mg of a slow-release preparation of nifedipine (n = 10) or placebo (n = 11) every 8 hours while ascending rapidly (within 22 hours) from a low altitude to 4559 m and during the following three days at this altitude. Both the subjects and the investigators were blinded to the assigned treatment. The diagnosis of pulmonary edema was based on chest radiography. Pulmonary-artery pressure was measured by Doppler echocardiography and the difference between alveolar and arterial oxygen pressure was measured in simultaneously sampled arterial blood and end-expiratory air.

RESULTS: Seven of the 11 subjects who received placebo but only 1 of the 10 subjects who received nifedipine had pulmonary edema at 4559 m (P = 0.01). As compared with the subjects who received placebo, those who received nifedipine had a significantly lower mean (+/- SD) systolic pulmonary-artery pressure (41 +/- 8 vs. 53 +/- 16 mm Hg, P = 0.01), alveolar-arterial pressure gradient (6.6 +/- 3.8 vs. 11.8 +/- 4.4 mm Hg, P less than 0.001), and symptom score of acute mountain sickness (2.0 +/- 0.7 vs. 3.9 +/- 1.9, P less than 0.01) at 4559 m.

CONCLUSIONS: The prophylactic administration of nifedipine is effective in lowering pulmonary-artery pressure and preventing high-altitude pulmonary edema in susceptible subjects. These findings support the concept that high pulmonary-artery pressure has an important role in the development of high-altitude pulmonary edema.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app