JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome.

Although brainstem serotonergic (5-HT) systems are involved in the protective responses to hypoxia, abnormalities of 5-HT function are strongly implicated in SIDS, and the neurochemical mechanisms by which 5-HT receptors influence brainstem cardiorespiratory responses to hypoxia remains unclear. This study focuses on the role of excitatory neurotransmission, including 5-HT3 signaling, to cardiac vagal neurons (CVNs) that dominate the control of heart rate. Excitatory synaptic inputs to CVNs, located in the nucleus ambiguus (NA), were recorded simultaneously with respiratory activity in in vitro brainstem slices. During control conditions excitatory inputs to CVNs were blocked by application of NMDA and AMPA/kainate glutamatergic receptor antagonists, whereas the 5-HT3 and purinergic receptor antagonists ondansetron and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), respectively, had no effect. However, during hypoxia ondansetron inhibited excitatory neurotransmission to CVNs. In recovery from hypoxia, spontaneous and respiratory-related excitatory events were blocked by glutamatergic and purinergic receptor blockers, respectively, whereas ondancetron had no effect. These results demonstrate that hypoxia recruits a 5-HT pathway to CVNs that activates 5-HT3 receptors on CVNs to maintain parasympathetic cardiac activity during hypoxia. Exaggeration of this 5-HT neurotransmission could increase the incidence of bradycardia and risk of sudden infant death during hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app