JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome.

Mild infection may trigger sudden death in the vulnerable infant by cytokine interactions with a compromised medullary serotonergic (5-HT) system, leading to disrupted cardiorespiratory regulation and sleep-related sudden death. The cytokine interleukin (IL)-6 is elevated in the cerebrospinal fluid in SIDS. We tested the hypothesis that the expression of IL-6 receptors (IL-6R) and/or gp130 (involved in IL-6R signaling) is altered in the medullary 5-HT system in SIDS. Immunohistochemistry of IL-6R and gp130 was performed on medullae from 25 SIDS infants, 20 infectious deaths, and 14 controls using a semi-quantitative grading system. In the SIDS cases, mean IL-6R intensity grade in the arcuate nucleus (major component of medullary 5-HT system) was significantly higher than in the control group (2.00 +/- 0.07 vs. 1.77 +/- 0.08, P = 0.04), with no other differences in IL-6R or gp130 expression at any other site. Arcuate 5-HT neurons expressed IL-6R, indicating a site of IL-6/5-HT interaction. In SIDS, IL-6R expression is abnormal in the arcuate nucleus, the putative human homolog of rodent ventral medullary chemosensitivity sites involving 5-HT. Aberrant interactions between IL-6 and the arcuate nucleus may contribute to impaired responses to hypercapnia generated by infection (hyper-metabolism) combined with rebreathing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app