Add like
Add dislike
Add to saved papers

The role of bracing, casting, and vertical expandable prosthetic titanium rib for the treatment of infantile idiopathic scoliosis: a single-institution experience with 31 consecutive patients. Clinical article.

OBJECT: There are few data on treatment results for patients with idiopathic infantile scoliosis (IIS). Thus, the authors have performed a retrospective review of their experience with treating these patients, particularly as newer technologies, such as the vertical expandable prosthetic titanium rib (VEPTR), emerge.

METHODS: This retrospective study was conducted to evaluate the methods of treatment used to manage IIS at a single institution. The authors reviewed 31 consecutive patients with a primary diagnosis of IIS. Patients were screened to ensure that there were no confounding congenital anomalies or comorbidities that may have contributed to the spinal deformity. The average age at the time of initial treatment was 25 months. Treatment modalities included bracing, serial body casting, and VEPTR. Pretreatment, posttreatment, and most recent Cobb angles were compared to assess the overall curve correction, and patient charts were reviewed for the occurrence of complications.

RESULTS: Of the 31 patients, 17 were treated with a brace, 9 of whom had curve progression and went on to other forms of treatment. Of the 8 who did respond, there was an overall improvement of 51.2%. The 10 patients who received body casts, who had a mean preoperative Cobb angle of 50.4 degrees, demonstrated an average correction of 59.0%, with only a few skin irritations reported. The 10 patients treated with VEPTR devices demonstrated a mean preoperative Cobb angle of 90.0 degrees, and an average correction of 33.8% was attained. Three of the VEPTR-treated patients (33%) experienced minor problems.

CONCLUSIONS: The authors' results suggest that body casting has utility for appropriately selected patients; that is, those with smaller, flexible spinal curves. Bracing had limited utility, with high levels of progression and the need for secondary treatments. The VEPTR device appears to be a viable alternative for large-magnitude curves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app