Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dopamine cell loss in the periaqueductal gray in multiple system atrophy and Lewy body dementia.

Neurology 2009 July 15
BACKGROUND: Experimental studies indicate that dopaminergic neurons in the ventral periaqueductal gray matter (PAG) are involved in maintenance of wakefulness. Excessive daytime sleepiness (EDS) is a common manifestation of multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) but involvement of these neurons has not yet been explored.

METHODS: We sought to determine whether there is loss of dopaminergic neurons in the ventral PAG in MSA and DLB. We studied the midbrain obtained at autopsy from 12 patients (9 male, 3 female, age 61 +/- 3) with neuropathologically confirmed MSA, 12 patients (11 male, 1 female, age 79 +/- 4) with diagnosis of DLB and limbic or neocortical Lewy body disease, and 12 controls (7 male, 5 female, ages 67 +/- 4). Fifty-micron sections were immunostained for tyrosine hydroxylase (TH) or alpha-synuclein and costained with thionin. Cell counts were performed every 400 mum throughout the ventral PAG using stereologic techniques.

RESULTS: Compared to the total estimated cell numbers in controls (21,488 +/- 8,324 cells), there was marked loss of TH neurons in the ventral PAG in both MSA (11,727 +/- 5,984; p < 0.01) and DLB (5,163 +/- 1,926; p < 0.001) cases. Cell loss was more marked in DLB than in MSA. There were characteristic alpha-synuclein inclusions in the ventral PAG in both MSA and DLB.

CONCLUSIONS: There is loss of putative wake-active ventral periaqueductal gray matter dopaminergic neurons in both multiple system atrophy and dementia with Lewy bodies, which may contribute to excessive daytime sleepiness in these conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app