JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury.

Brain Research 2009 November 4
TAR DNA binding protein (TDP-43) mislocalization has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). We have recently reported that TDP-43 and PGRN expression is altered in response to axotomy in C57BL6 mice and that normal expression is restored following recovery. We have performed axotomies in two different presymptomatic models of motor neuron degeneration, low molecular weight neurofilament knockout (NFL(-/-)) mice and mutant SOD1(G93A) transgenic (mtSOD1(G93A)) mice aged 6 weeks, and observed TDP-43 and PGRN expression patterns in axotomized spinal motor neurons over 28 days. In contrast to both C57BL6 mice and mtSOD1(G93A) mice, behavioural deficits in NFL(-/-) mice were sustained. We did not observe differences in TDP-43 or PGRN expression between C57BL6 mice and mtSOD1(G93A) mice throughout the observation period. However, compared to C57BL6 mice and mtSOD1(G93A) mice, NFL(-/-) mice exhibited late upregulation of cytosolic TDP-43 expression and persistent downregulation of neuronal PGRN expression accompanied by caspase 3 activation on post-injury day 28. By post-injury day 42, no cytosolic TDP-43-positive neurons remained in NFL(-/-) mice, suggesting that they had undergone apoptotic cell death. These findings suggest that whereas TDP-43 expression is normally upregulated transiently following axotomy, in the absence of NFL this response is delayed and associated with caspase 3 activation and neuronal death. These results further support that TDP-43 is involved in neurofilament mRNA metabolism and transport, and provide insight into the pathogenesis of motor neuron death in ALS in which NFL mRNA levels are selectively suppressed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app