Add like
Add dislike
Add to saved papers

Role of endothelial nitric oxide synthase in the development of portal hypertension in the carbon tetrachloride-induced liver fibrosis model.

Portal hypertension (PHT) is a complication of liver cirrhosis and directly increases mortality and morbidity by increasing the propensity of venous hemorrhage. There are two main underlying causations for PHT, increased hepatic resistance and systemic hyperdynamic circulation. Both are related to localized aberrations in endothelial nitric oxide synthase (eNOS) function and NO biosynthesis. This study investigates the importance of eNOS and systemic hyperdynamic-associated hyperemia to better understand the pathophysiology of PHT. Wild-type and eNOS(-/-) mice were given the hepatotoxin CCl(4) for 4-12 wk. Hepatic fibrosis was determined histologically following collagen staining. Portal venous pressure, hepatic resistance, and hyperemia were determined by measuring splenic pulp pressure (SPP), hepatic portal-venous perfusion pressure (HPVPP), abdominal aortic flow (Qao), and portal venous flow (Qpv). Hepatic fibrosis developed equally in wild-type and eNOS(-/-) CCl(4)-exposed mice. SPP, Qao, and Qpv increased rapidly in wild-type CCl(4)-exposed mice, but HPVPP did not. In eNOS(-/-) CCl(4) mice, Qao was not increased, SPP was partially increased, and HPVPP and Qpv were increased nonsignificantly. We concluded that the systemic hyperemia component of hyperdynamic circulation is eNOS dependent and precedes increased changes in hepatic resistance. Alternative mechanisms, possibly involving cyclooxygenase, may contribute. eNOS maintains normal hepatic resistance following CCl(4)-induced fibrosis. Consequently, increased portal pressure following chronic CCl(4) exposure is linked to hyperdynamic circulation in wild-type mice and increased hepatic resistance in eNOS(-/-) mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app