COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

In vitro large diameter bowel anastomosis using a temperature controlled laser tissue soldering system and albumin stent.

BACKGROUND AND OBJECTIVE: In today's age of advancing surgical technology, there is a need for better and simpler methods of tissue bonding. The use of lasers for tissue welding or soldering is one of these sutureless methods. In 30 years of laser tissue bonding (LTB) research, published reports of cylindrical organ anastomosis were limited to small diameters. The tension resisted by the anastomosis, which is caused by the intraluminal pressure, is also proportional to the organ diameter. Therefore the anastomosis of large diameter organs requires significantly stronger mechanical strength. The aim of this study is to demonstrate such an anastomosis.

MATERIALS AND METHODS: In vitro anastomosis of porcine small bowel was performed by either LTB or sutures. Anastomosis in the laser group (number of samples, n = 15) included two main stages of soldering. The bowel edges were approximated over a solid albumin stent and heated with a temperature controlled GaAs laser system to 75 degrees C. This was followed by spreading liquid albumin on the anastomotic line and heating by the same system again to 75 degrees C. The control group (n = 5) was sutured anastomosis. All anastomoses were assessed by burst pressure measurement.

RESULTS: The burst pressure of the laser group attained 170+/-40 mmHg which was significantly higher than that of the sutured group 83+/-37 mmHg (P < 0.001).

CONCLUSION: This report describes the in vitro LTB anastomosis of a large diameter cylindrical organ. The immediate bond strength, as estimated by burst pressure measurements, was double compared to sutured anastomosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app