Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional analysis of BMP4 mutations identified in pediatric CAKUT patients.

Pediatric Nephrology 2009 December
Human congenital anomalies of the kidney and urinary tract (CAKUT) represent the major causes of chronic renal failure (CRF) in children. This set of disorders comprises renal agenesis, hypoplasia, dysplastic or double kidneys, and/or malformations of the ureter. It has recently been shown that mutations in several genes, among them BMP4, are associated with hereditary renal developmental diseases. In BMP4, we formerly identified three missense mutations (S91C, T116S, N150K) in five pediatric CAKUT patients. These BMP4 mutations were subsequently studied in a cellular expression system, and here we present functional data demonstrating a lower level of messenger RNA (mRNA) abundance in Bmp4 mutants that indicates a possible negative feedback of the mutants on their own mRNA expression and/or stability. Furthermore, we describe the formation of alternative protein complexes induced by the S91C-BMP4 mutation, which results in perinuclear endoplasmic reticulum (ER) accumulation and enhanced lysosomal degradation of Bmp4. This work further supports the role of mutations in BMP4 for abnormalities of human kidney development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app