CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma.

UNLABELLED: The aims of this study were to examine the relationship between whole-body absorbed dose and hematologic toxicity and to assess the most accurate method of delivering a prescribed whole-body absorbed dose in (131)I-metaiodobenzylguanidine ((131)I-MIBG) therapy for neuroblastoma.

METHODS: A total of 20 children (1-12 y), 5 adolescents (13-17 y), and 1 adult (20 y) with stage 3 or 4 neuroblastoma were treated to a prescribed whole-body absorbed dose, which in most cases was 2 Gy. Forty-eight administrations of (131)I-MIBG were given to the 26 patients, ranging in activity from 1,759 to 32,871 MBq. For 30 administrations, sufficient data were available to assess the effect of whole-body absorbed dose on hematologic toxicity. Comparisons were made between the accuracy with which a whole-body absorbed dose could be predicted using a pretherapy tracer study and the patient's most recent previous therapy. The whole-body absorbed dose that would have been delivered if the administered activity was fixed (7,400 MBq) or determined using a weight-based formula (444 MBq.kg(-1)) was also estimated.

RESULTS: The mean whole-body absorbed dose for patients with grade 4 Common Terminology Criteria for Adverse Events (CTCAE) neutropenia after therapy was significantly higher than for those with grade 1 CTCAE neutropenia (1.63 vs. 0.90 Gy; P = 0.05). There was no correlation between administered activity and hematologic toxicity. Absorbed whole-body doses predicted from previous therapies were within +/-10% for 70% of the cases. Fixed-activity administrations gave the largest range in whole-body absorbed dose (0.30-3.11 Gy).

CONCLUSION: The results indicate that even in a highly heterogeneous and heavily pretreated patient population, a whole-body absorbed dose can be prescribed accurately and is a more accurate predictor of hematologic toxicity than is administered activity. Therefore, a whole-body absorbed dose can be used to deliver accurate and reproducible (131)I-MIBG therapy on a patient-specific basis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app