Add like
Add dislike
Add to saved papers

Predictive value of multimodality MRI using conventional, perfusion, and spectroscopy MR in anaplastic transformation of low-grade oligodendrogliomas.

The aim of our study was to evaluate the role of proton magnetic resonance (MR) spectroscopy and MR perfusion in the follow-up of low-grade gliomas, since conventional MR imaging (MRI) is not reliable in detecting the passage from a low- to high-grade tumor. Twenty-one patients with a World Health Organisation (WHO) grade II glioma were followed up using proton MR spectroscopy, perfusion, and conventional MRIs. Follow-up MRIs had been performed at the third month of evolution and then twice a year, with an average of five MR studies per patient. Five out of the 21 patients had an anaplastic transformation. A choline to creatine ratio (choline/creatine ratio) above 2.4 is associated with an 83% risk of a malignant transformation in an average delay of 15.4 months. The choline/creatine ratio at this threshold was more efficient than perfusion MR in detecting the anaplastic transformation, with sensitivity of 80% and specificity of 94%. An increased choline/creatine ratio seemed to occur an average 15 months before the elevation of relative cerebral blood volume (rCBV). The mean annual growth of low-grade glioma was 3.65 mm. A growth rate higher than 3 mm per year was also correlated with greater risk of anaplastic transformation. Proton magnetic resonance spectroscopy should be recommended in the follow-up of low-grade gliomas since the choline/creatine ratio can predict anaplastic transformation before perfusion abnormalities, with high positive predictive value of 83%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app