JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.

Clinical Biomechanics 2009 December
BACKGROUND: The technological advances that have been made in developing highly functional prostheses are promising for very active patients but we do not yet know whether they cause an increase in biomechanical load along with possibly negative consequences for pressure conditions in the socket. Therefore, this study monitored the socket pressure at specific locations of the stump when using a microprocessor-controlled adaptive prosthetic ankle under different walking conditions.

METHODS: Twelve unilateral transtibial amputees between 43 and 59 years of age were provided with the Proprio-Foot (Ossur) and underwent an instrumented 3D gait analysis in level, stair, and incline walking, including synchronous data capturing of socket pressure. Peak pressures and pressure time integrals (PTI) at three different locations were compared for five walking conditions with and without using the device's ankle adaptation mode.

FINDINGS: Highest peak pressures of 2.4 k Pa/kg were found for incline ascent at the calf muscle as compared to 2.1 k Pa/kg in level walking with large inter-individual variance. In stair ascent a strong correlation was found between maximum knee moment and socket pressure. The most significant pressure changes relative to level walking were seen in ramp descent anteriorly towards the stump end, with PTI values being almost twice as high as those in level walking. Adapting the angle of the prosthesis on stairs and ramps modified the pressure data such that they were closer to those in level walking.

INTERPRETATION: Pressure at the stump depends on the knee moments involved in each walking condition. Adapting the prosthetic ankle angle is a valuable means of modifying joint kinetics and thereby the pressure distribution at the stump. However, large inter-individual differences in local pressures underline the importance of individual socket fitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app