Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Effects of treatments on inflammatory and apoptotic markers in the CNS of mice with globoid cell leukodystrophy.

Brain Research 2009 December 2
Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency results in a progressive demyelination of the central and peripheral nervous systems. Inflammatory cells and increased levels of cytokines and chemokines are present in the CNS of GLD mice and may play a significant role in the pathogenesis of the disease. In this study we evaluate the effect of non-steroidal anti-inflammatory drugs, such as indomethacin and ibuprofen, and minocycline, a tetracycline analog with neuroprotective and anti-apoptotic properties, on the progression of the disease using a transgenic mouse model of GLD. Real-time quantitative PCR was used to analyze the expression of several markers of the immune/inflammatory response. IL-6, TNF-alpha, MIP-1beta, MCP-1, iNOS/NOS2, CD11b, CD68, CD4 and CD8 mRNA levels were measured in cortex, cerebellum and spinal cord of untreated and treated affected mice at different ages. In addition, the pharmacological treatments were compared to bone marrow transplantation (BMT). The pharmacological treatments significantly extended the life-span of the treated mice and reduced the levels of several of the immuno-related factors studied. However, BMT produced the most dramatic improvements. In BMT-treated mice, factors in the spinal cord were normalized faster than the cerebellum, with the exception of CD68. There was a decrease in the number of apoptotic cells in the cerebellum of mice receiving anti-inflammatory drugs and BMT. These studies indicate a possible role for combined therapy in the treatment of GLD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app