Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular analysis of aggressive microdermabrasion in photoaged skin.

OBJECTIVE: To investigate dermal remodeling effects of crystal-free microdermabrasion on photodamaged skin.

DESIGN: Biochemical analyses of human skin biopsy specimens following microdermabrasion treatment in vivo.

SETTING: Academic referral center.

PARTICIPANTS: Volunteer sample of 40 adults, aged 50 to 83 years, with clinically photodamaged forearms. Intervention Focal microdermabrasion treatment with diamond-studded handpieces of varying abrasiveness on photodamaged forearms and serial biopsies at baseline and various times after treatment.

MAIN OUTCOME MEASURES: Quantitative polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assay were used to quantify changes in inflammatory, proliferative, and remodeling effectors of normal wound healing. Type I and type III procollagen served as the main outcome marker of dermal remodeling.

RESULTS: Coarse-grit microdermabrasion induces a wound healing response characterized by rapid increase in induction of cytokeratin 16 and activation of the AP-1 transcription factor in the epidermis. Early inflammation was demonstrated by induction of inflammatory cytokines, antimicrobial peptides, and neutrophil infiltration in the dermis. AP-1 activation was followed by matrix metalloproteinase-mediated degradation of extracellular matrix. Consistent with this wound-healing response, we observed significant remodeling of the dermal component of the skin, highlighted by induction of type I and type III procollagen and by induction of collagen production enhancers heat shock protein 47 and prolyl 4-hydroxylase. Dermal remodeling was not achieved when microdermabrasion was performed using a medium-grit handpiece.

CONCLUSIONS: Microdermabrasion using a coarse diamond-studded handpiece induces a dermal remodeling cascade similar to that seen in incisional wound healing. Optimization of these molecular effects is likely the result of more aggressive treatment with a more abrasive handpiece.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app