JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Analysis of pulmonary inflammation and function in the mouse and baboon after exposure to Mycoplasma pneumoniae CARDS toxin.

PloS One 2009 October 28
Mycoplasma pneumoniae produces an ADP-ribosylating and vacuolating toxin known as the CARDS (Community Acquired Respiratory Distress Syndrome) toxin that has been shown to be cytotoxic to mammalian cells in tissue and organ culture. In this study we tested the ability of recombinant CARDS (rCARDS) toxin to elicit changes within the pulmonary compartment in both mice and baboons. Animals responded to a respiratory exposure to rCARDS toxin in a dose and activity-dependent manner by increasing the expression of the pro-inflammatory cytokines IL-1alpha, 1beta, 6, 12, 17, TNF-alpha and IFN-gamma. There was also a dose-dependent increase in several growth factors and chemokines following toxin exposure including KC, IL-8, RANTES, and G-CSF. Increased expression of IFN-gamma was observed only in the baboon; otherwise, mice and baboons responded to CARDS toxin in a very similar manner. Introduction of rCARDS toxin to the airways of mice or baboons resulted in a cellular inflammatory response characterized by a dose-dependent early vacuolization and cytotoxicity of the bronchiolar epithelium followed by a robust peribronchial and perivascular lymphocytic infiltration. In mice, rCARDS toxin caused airway hyper-reactivity two days after toxin exposure as well as prolonged airway obstruction. The changes in airway function, cytokine expression, and cellular inflammation correlate temporally and are consistent with what has been reported for M. pneumoniae infection. Altogether, these data suggest that the CARDS toxin interacts extensively with the pulmonary compartment and that the CARDS toxin is sufficient to cause prolonged inflammatory responses and airway dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app