Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tumor risk by tissue engineering: cartilaginous differentiation of mesenchymal stem cells reduces tumor growth.

OBJECTIVE: Implantation of autologous chondrocytes (AC) is a promising option for the treatment of cartilage defects, but problems with cell harvesting, dedifferentiation, or the donor age limit the clinical outcome. Mesenchymal stem cells (MSC) gain much interest because of their simple isolation and multipotential differentiation capacity along with their immunosuppressive properties. The latter might introduce tumor manifestation. The influence of undifferentiated and chondrogenically differentiated MSC or AC on tumor growth and metastasis formation was investigated in a murine melanoma model.

METHODS: Allogeneic melanoma cells and either syngeneic MSC (C3H10T1/2, transduced with enhanced green fluorescent protein gene) or AC were co-injected at a distance of 3 cm into the contra lateral groins of five mice/group, and evaluated macroscopically and histologically after 4 weeks.

RESULTS: Undifferentiated MSC migrated to the tumor site and induced strong tumor growth and metastasis formation. Even avital MSC promoted tumor growth and spreading, but insignificantly without detectable MSC at the tumor site. Chondrogenically differentiated MSC did not migrate and had a significantly lower impact on tumor growth and spreading; AC had no measurable influence on melanoma cells.

CONCLUSIONS: Our data suggest that differentiation of MSC reduces MSC-dependent promotion of latent tumors and that native AC do not introduce any increased risk of tumor growth. The question of how far MSC should be differentiated prior to clinical application should be addressed in further studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app