JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pseudoxanthoma elasticum: molecular genetics and putative pathomechanisms.

Pseudoxanthoma elasticum (PXE), a prototypic heritable disorder with ectopic mineralization, manifests with characteristic skin findings, ocular involvement and cardiovascular problems, with considerable morbidity and mortality. The classic forms of PXE are due to loss-of-function mutations in the ABCC6 gene, which encodes ABCC6, a transmembrane efflux transporter expressed primarily in the liver. Several lines of evidence suggest that PXE is a primary metabolic disorder, which in the absence of ABCC6 transporter activity, displays reduced plasma anti-mineralization capacity due to reduced fetuin-A and matrix gla-protein (MGP) levels. MGP requires to be activated by gamma-glutamyl carboxylation, a vitamin K-dependent reaction, to serve in an anti-mineralization role in the peripheral connective tissue cells. Although the molecules transported from the hepatocytes to circulation by ABCC6 in vivo remain unidentified, it has been hypothesized that a critical vitamin K derivative, such as reduced vitamin K conjugated with glutathione, is secreted to circulation physiologically, but not in the absence of ABCC6 transporter activity. As a result, activation of MGP by gamma-glutamyl carboxylase is diminished, allowing slow yet progressive mineralization of connective tissues characteristic of PXE. Understanding of the pathomechanistic details of PXE provides a basis for the development of targeted molecular therapies for this currently intractable disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app