Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects.

CONTEXT: Glucocorticoids are known to decrease protein synthesis and impair membrane excitability of muscle fibers. However, their short-term effects on muscle structure and function of healthy subjects remain poorly understood.

OBJECTIVE: Our objective was to investigate whether steroid administration could decrease the circulating levels of muscle proteins and modify myoelectric indexes of sarcolemmal excitability and fatigability.

DESIGN: We conducted a single-blind, placebo-controlled study in 20 men randomized to receive dexamethasone (8 mg/d) or placebo for 1 wk. Blood sampling, force measurements for knee extensors and elbow flexors, and electrophysiological tests for biceps brachii, vastus lateralis and medialis, and tibialis anterior muscles were performed before and after the intervention.

RESULTS: Dexamethasone administration improved force by 6.0 +/- 6.0% (P = 0.01) for elbow flexors and by 8.5 +/- 5.5% (P < 0.01) for knee extensors, decreased levels of creatine kinase by 50.5 +/- 30.0% (P < 0.01) and myoglobin by 41.8 +/- 17.5% (P < 0.01), and impaired sarcolemmal excitability, as shown by the decline of muscle fiber conduction velocity for the four muscles (range from -6 to -10.5%, P < 0.05). Moreover, significant reductions of the myoelectric manifestations of fatigue were observed for the four muscles; the decrease in the rate of change of the mean frequency of the electromyographic power spectrum ranged from -22.6 to -43.9% (P < 0.05). In contrast, no significant changes were observed in muscle excitability and fatigability in subjects who received the placebo.

CONCLUSIONS: The demonstration that glucocorticoid-induced muscle impairments can be unraveled by means of blood sampling and noninvasive electrophysiological tests has clinical implications for the early identification of subclinical or preclinical forms of myopathy in treated patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app