JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

The U1-snRNP complex: structural properties relating to autoimmune pathogenesis in rheumatic diseases.

The U1 small nuclear ribonucleoprotein particle (snRNP) is a target of autoreactive B cells and T cells in several rheumatic diseases including systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD). We propose that inherent structural properties of this autoantigen complex, including common RNA-binding motifs, B and T-cell epitopes, and a unique stimulatory RNA molecule, underlie its susceptibility as a target of the autoimmune response. Immune mechanisms that may contribute to overall U1-snRNP immunogenicity include epitope spreading through B and T-cell interactions, apoptosis-induced modifications, and toll-like receptor (TLR) activation through stimulation by U1-snRNA. We conclude that understanding the interactions between U1-snRNP and the immune system will provide insights into why certain patients develop anti-U1-snRNP autoimmunity, and more importantly how to effectively target therapies against this autoimmune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app