Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TRPM1 mutations are associated with the complete form of congenital stationary night blindness.

PURPOSE: To identify human transient receptor potential cation channel, subfamily M, member 1 (TRPM1) gene mutations in patients with congenital stationary night blindness (CSNB).

METHODS: We analyzed four different Japanese patients with complete CSNB in whom previous molecular examination revealed no mutation in either nyctalopin (NYX) or glutamate receptor, metabotropic 6 (GRM6). The ophthalmologic examination included best-corrected visual acuity, refraction, biomicroscopy, ophthalmoscopy, fundus photography, Goldmann kinetic perimetry, color vision tests, and electroretinography (ERG). Exons 2 through 27 and the exon-intron junction regions of human TRPM1 were sequenced.

RESULTS: Five different mutations in human TRPM1 were identified. Mutations were present in three unrelated patients with complete CSNB. All three patients were compound heterozygotes. Fundus examination revealed no abnormalities other than myopic changes, and the single bright-flash, mixed rod-cone ERG showed a "negative-type" configuration with a reduced normal a-wave and a significantly reduced b-wave amplitude. Our biochemical and cell biologic analyses suggest that the two identified IVS mutations lead to abnormal TRPM1 protein production, and imply that the two identified missense mutations lead to the mislocalization of the TRPM1 protein in bipolar cells (BCs).

CONCLUSIONS: Human TRPM1 mutations are associated with the complete form of CSNB in Japanese patients, suggesting that TRPM1 plays an essential role in mediating the photoresponse in ON BCs in humans as well as in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app