Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Semiautomated intraocular laser surgery using handheld instruments.

BACKGROUND AND OBJECTIVE: In laser retinal photocoagulation, hundreds of dot-like burns are applied. We introduce a robot-assisted technique to enhance the accuracy and reduce the tedium of the procedure.

MATERIALS AND METHODS: Laser burn locations are overlaid on preoperative retinal images using common patterns such as grids. A stereo camera/monitor setup registers and displays the planned burn locations overlaid on real-time video. Using an active handheld micromanipulator, a 7 x 7 grid of burns spaced 650 microm apart is applied to both paper slides and porcine retina in vitro using 30 milliseconds laser pulses at 532 nm. Two scenarios were tested: unaided, in which the micromanipulator is inert and the laser fires at a fixed frequency, and aided, in which the micromanipulator actively targets burn locations and the laser fires automatically upon target acquisition. Error is defined as the distance from the center of the observed burn mark to the preoperatively selected target location.

RESULTS: An experienced retinal surgeon performed trials with and without robotic assistance, on both paper slides and porcine retina in vitro. In the paper slide experiments at an unaided laser repeat rate of 0.5 Hz, error was 125+/-62 microm with robotic assistance and 149+/-76 microm without (P < 0.005), and trial duration was 70+/-8 seconds with robotic assistance and 97+/-7 seconds without (P < 0.005). At a repeat rate of 1.0 Hz, error was 129+/-69 microm with robotic assistance and 166+/-91 microm without (P < 0.005), and trial duration was 26+/-4 seconds with robotic assistance and 47+/-1 seconds without (P < 0.005). At a repeat rate of 2.0 Hz on porcine retinal tissue, error was 123+/-69 microm with robotic assistance and 203+/-104 microm without (P < 0.005).

CONCLUSION: Robotic assistance can increase the accuracy of laser photocoagulation while reducing the duration of the operation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app