Add like
Add dislike
Add to saved papers

Differential roles for NOD2 in osteoblast inflammatory immune responses to bacterial pathogens of bone tissue.

Osteoblasts produce an array of immune molecules following bacterial challenge that can contribute to inflammation and the recruitment of leukocytes to sites of infection during bone diseases such as osteomyelitis. However, the mechanisms by which osteoblasts perceive and respond to facultative intracellular pathogens such as Salmonella species and Staphylococcus aureus have not been determined. Recently, our laboratory has described the expression in osteoblasts of members of the nucleotide-binding domain leucine-rich repeat region containing family of proteins that include nucleotide-binding oligomerization domain-2 (NOD2), a molecule that functions as an intracellular receptor for bacterial peptidoglycans. In the present study, we demonstrate that NOD2 expression is required for select inflammatory mediator production by osteoblasts following infection with the invasive pathogen Salmonella. In contrast, we have found that the inflammatory immune responses of osteoblasts to the passively internalized bacterial species Staphylococcus aureus, heat-killed pathogenic Salmonella, a non-invasive Salmonella strain and specific Toll-like receptor ligands are not reduced in the absence of NOD2 expression but are, in fact, elevated. Based upon these findings, we suggest that NOD2 serves differential roles in osteoblasts, promoting inflammatory responses to invasive bacteria while tempering cell responses to extracellular and/or passively internalized bacterial species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app