CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Increased Na reabsorption via the Na-Cl cotransporter in autosomal recessive pseudohypoaldosteronism.

BACKGROUND: The autosomal recessive form of pseudohypoaldosteronism type 1 (AR-PHA1) is caused by loss-of-function mutations in the epithelial sodium channel subunit genes and is characterized by a multisystemic and lifelong severe salt-wasting tendency. However, we observed a male AR-PHA1 patient who exhibited less frequent salt wasting with advancing age, despite the cessation of daily salt supplementation.

OBJECTIVE: To elucidate the mechanism for the above phenomenon.

METHODS: We evaluated the sodium-reabsorption ability of his distal nephrons (from the distal convoluted tubules to the collecting ducts) and compared it to that of a patient with the dominant form of PHA1 (AD-PHA1) carrying a heterozygous NR3C2 (mineralocorticoid receptor) gene mutation. In addition, immunoblotting of the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) protein was conducted using urine samples from the AR- and AD-PHA1 patients.

RESULTS: The levels of sodium reabsorption that occurred via the distal nephrons were almost identical in the two PHA1 patients, despite their different molecular pathogeneses. Immunoblotting showed an increased urinary NCC protein level in the AR-PHA1 patient.

CONCLUSION: Taken together, increased sodium reabsorption via the upregulation of the expression of NCC might have been responsible, at least in part, for the clinical improvement seen in an AR-PHA1 patient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app