JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Methylmercury-induced neurotoxicity and apoptosis.

Methylmercury is a widely distributed environmental toxicant with detrimental effects on the developing and adult nervous system. Due to its accumulation in the food chain, chronic exposure to methylmercury via consumption of fish and sea mammals is still a major concern for human health, especially developmental exposure that may lead to neurological alterations, including cognitive and motor dysfunctions. Mercury-induced neurotoxicity and the identification of the underlying mechanisms has been a main focus of research in the neurotoxicology field. Three major mechanisms have been identified as critical in methylmercury-induced cell damage including (i) disruption of calcium homeostasis, (ii) induction of oxidative stress via overproduction of reactive oxygen species or reduction of antioxidative defenses and (iii) interactions with sulfhydryl groups. In vivo and in vitro studies have provided solid evidence for the occurrence of neural cell death, as well as cytoarchitectural alterations in the nervous system after exposure to methylmercury. Signaling cascades leading to cell death induced by methylmercury involve the release of mitochondrial factors, such as cytochrome c and AIF with subsequent caspase-dependent or -independent apoptosis, respectively; induction of calcium-dependent proteases calpains; interaction with lysosomes leading to release of cathepsins. Interestingly, several pathways can be activated in parallel, depending on the cell type. In this paper, we provide an overview of recent findings on methylmercury-induced neurotoxicity and cell death pathways that have been described in neural and endocrine cell systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app